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Normal electric modes at small polyhedral particles 

D Langbein 
Battelle Institut e.V., Postfach 900160, Am Romerhof 35, 6000 Frankfurt am Main 90, 
FDR 

Received 5 October 1976, in final form 7 December 1976 

Abstract. The electric potential of a normal mode at a dielectric or metallic polyhedron is 
expanded in terms of spherical multipoles. By inducing surface charges each multipole 
induces secondary multipoles. It is shown that all matrix elements of the resultant secular 
problem can be calculated analytically, which considerably improves convergence of the 
eigenvalues of the normal modes. The total shift of eigenvalues caused by multipoles of 
equal degree is proved to be independent of the shape of the polyhedron under considera- 
tion. Simple recurrence relations for separating the secular problem in the case of 
tetrahedral or cubic symmetry are derived and explicit eigenvalue schemes for some 
standard polyhedrons are giver). 

1. Introduction 

We recently reported a new method of calculating the normal electric modes at cubes 
and rectangular particles (Langbein 1976). By expanding the electric potential of the 
normal modes in terms of spherical multipole potentials we calculated the polarization 
charges induced on the surface of the particle under investigation, and in turn expanded 
the electric potential caused by the polarization charges in terms of spherical mul- 
tipoles. This self-consistent approach has the advantage that all matrix elements 
between the primary and induced multipoles can be integrated analytically. Compared 
to earlier papers on normal electric modes at cubes (van Gelder eta1 1972, Fuchs 1974) 
the convergence of the eigenvalues of the normal modes is improved considerably. The 
number of multipoles required to achieve comparable accuracy is reduced by a factor of 
five. 

In this paper we extend the investigations on the normal modes at small particles to 
cover polyhedrons of arbitrary shape. We derive a set of recurrence relations, from 
which all relevant surface integrals can be calculated, and prove the conservation law 
that the mean position of all eigenvalues is independent of the shape of the polyhedron. 
Turning to polyhedrons with tetrahedral or cubic symmetry we substitute cubic 
harmonics for the spherical harmonics and calculate explicit eigenvalue schemes for a 
series of usual habits. 

2. Secular system 

The basic idea underlying the calculation of the normal electric modes at a small 
dielectric particle was described in a recent paper (Langbein 1976). The external 

1031 



1032 D Langbein 

electric potential V ( r )  of a normal mode is expanded in terms of spherical multipoles, 
the polarization charges induced at the surface of the particle are calculated, and the 
resulting secondary potential is again expanded in terms of spherical multipoles. 
Self-consistency means that the primary and the induced potential are identical. 
Putting externally 

where y is the eigenvalue containing the internal and the external dielectric functions 
Eint(m) and Eext(W), 

The integration in equation (2) extends over the surface of the particle, the derivative 
V,,,, is to be taken normal to the surface. The integers m, n and p, v run over degree 
and order of the multipole potentials under consideration. 

The evaluation of the surface integrals in equation (2), in the presence of a 
polyhedron of arbitrary shape, involves two major steps. The first step is to rotate the 
polar axis of the multipoles under consideration to the normal vectors pointing from the 
centre of the polyhedron to its different faces. The second step covers the integration on 
the different faces. 

The first step is based on the rules of coordinate transformations. We denote the 
coordinate normal to a particular face of the polyhedron by z and the angle between the 
z axis and the polar axis of the spherical multipoles by a (see figure 1). Then we choose 
the x axis to be perpendicular to one of the edges of the face considered. The Eulerian 
angle between the x axis and the axis of rotation is denoted by p and that between the 
zero azimuth axis and the axis of rotation by I,4 (see figure 1). Hence 

r cos 8 = ( -x  sin p + y  cos p )  sin cr + z  cos cr 

r sin 8 exp(i4) (4) 

= { ( x  cos p + y sin p )  + i[(-x sin /3 + y cos p )  cos cr - z sin a] exp(i $)}. 

In order to perform the integration over a particular face it is convenient to dissect the 
face into right triangles. We connect the point of intersection of the z axis with all 
corners and draw the heights with respect to all edges (see figure 2). This yields 2N 
triangles, where N is the number of edges. We denote the lengths of the heights by ui 
and the sections on the edges by ui (i = 1,2,  . . . ,2N)(see figure 2). 

Rotating the x axis successively into the direction of all heights leaves us with 
integrations over the standard triangle shown in figure 3. The integrand is a polynomial 
in x and y and may contain positive or negative powers of the distance 

r = ( x 2 + y 2 + z 2 ) " 2 .  ( 5 )  
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Figure 1. Rotation of coordinates. 

We thus have to deal with the surface integrals 

d r  x ky ' r m  = lou dx [o"x'u dy x k y  ' ( x  2 + y 2 + z 2)"2. (6) 

The surface integrals (6) can be evaluated analytically for arbitrary powers k, 1 and m of 
x ,  y and z. If the polyhedron has a centre of inversion, there is no interaction between 
multipoles of even and odd degree, so that we are interested in odd powers of m only. 

L"d 

Figure 2. Dissection of faces. Figure 3. Standard triangle. 

The surface integrals (6) are easily evaluated by means of a few recurrence relations. 
The most obvious recurrence relation results directly from equation (5) :  

I[& dyxk+2y'rm + I[& dyxky'+2rm + z 2  I[& dyxky'rm =[I& dyxky'rm+*. 

Two further recurrence relations between the surface integrals (6) are obtained by 
(7) 
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partial integration with respect to x and y. Taking appropriate linear combinations of 
the resulting equations yields 

(k + 1 + m + 2) 1 1 dx dy xky'rm - mz 1 dx dy ~ ~ y ' r " ' - ~  

=U&+' lo" dyy'(u2+y2+z2)m/2 

C .  .. 
m J J dx dy xky1+2rm-2+(I+ I) J J dx dyxky'rm 

By means of equations (8 )  and (9) we can lower or raise m and k, respectively. Lowering 
or raising 1 is achieved by also using equation (7). Equations (7)-(9) lower or raise k, 1, 
and m by two, i.e. as initial values of the surface integrals we need 

lldx dy r -3  = 2-l tan-'[uu/(r~+zr,)] 

11.1 d y ~ r - ~  = ( u / w )  sinh-'(w/z)-sinh-'(u/r,) 

l l d x  dy yr-3 = sinh-'(u/z)-(u/w) sinh-'(w/z) 

l l d x  d y ~ y r - ~ = ( r ,  - z > - ( u / w ) 2 ( r w  -2) (13) 

where 

are, respectively, the hypotenuse of the right triangle under consideration and the 
distances of its edges from the centre. 

The single integrals over x and y in equations (8) and (9) and their recurrence 
relations are elementary. 

3. Eigenvalue conservation 

Before explicitly calculating the dependence of the eigenvalues y on the shape of a 
particular polyhedron, let us state that the sum over all eigenvalues does not depend on 
the shape of the polyhedron at all. More explicitly, we shall prove that the total shift of 
the eigenvalues caused by spherical multipoles of equal degree m and different order 1.1 
is independent of the shape of the polyhedron considered. Among the consequences of 
this conservation law we find that the monopole eigenvalue always equals - 1 and that 
the Lorentz-Lorenz relation holds for all polyhedrons exhibiting three independent 
equivalent space directions. 
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Using the fact that the sum over all eigenvalues y equals the trace of the secular 
matrix (2), we now consider those contributions to the trace which result from 
multipoles of equal degree m and varying order 1.1. By summing the diagonal terms in 
equation (2) over p and partial integration we have 

The two sums over p on the right-hand side of equation (15) are identical and equal 1, 
as can be seen from the addition theorem for Legendre functions (Erdtlyi et a1 1953, 
equation 3.11.(2)). The normal gradient V,,,, thus applies to the distance r only. By 
commutation of r2"' and r-(2m+1) with V,,,, we find that the right-hand side of equation 
(15) turns into (m + 1) times the surface integral over the elecfric flux through the 
polyhedron. Independent of the shape of the polyhedron we obtain 

The contribution of the (2m + 1) spherical multipoles of equal degree m and varying 
order p to the trace of the secular matrix (2) equals - (m + 1). In the case of spheres, 
where these (2m + 1) multipoles are equivalent, the contribution of each multipole 
equals - (m + 1)/(2m + l), yielding the well known result y = - (m + 1)/(2m + 1). 

In the case of polyhedrons we learn from equation (16) that the contribution of the 
monopole m = p = 0 to t'he trace of the secular matrix equals -1. This is also the 
eigenvalue corresponding to the monopole mode, since all matrix elements between the 
monopole m = 0 and the multipoles n # 0 vanish. Whereas the monopole generally 
induces surface charges, which couple it to multipoles, the multipoles do not in turn give 
rise to a monopole. 

The three dipoles m = 1, p = -1, 0, +1 are equivalent, whenever the polyhedron 
under consideration exhibits three independent equivalent axes. The contribution of 
each dipole to the trace of the secular matrix (2) then equals -3, i.e. the secondary dipole 
induced by a primary dipole equals that arising in the case of spheres. This means 
validity of the Lorentz-Lorenz relation. However, the reservation has to be made that a 
primary dipole does not only induce a secondary dipole but also secondary multipoles 
which give rise to additional tertiary dipoles, so that we have to cope with correction 
terms of the order of (ecxt(&) - E ~ , , ~ ( U ) ) ~ .  

If the polyhedron under consideration is extended in one direction, the contribution 
of the corresponding dipole to the trace of the secular matrix (2) increases, whereas the 
contribution of the two other dipoles decreases by half that amount according to 
equation (16). The conservation principle of eigenvalues thus easily explains many of 
the findings on normal modes at rectangular particles reported by Langbein (1976). 
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4. Cubic harmonics 

The solution of the secular problem (2) can usually be greatly simplified by applying 
group theoretical arguments. The spherical multipole potentials used in equation (1) 
are fully adapted to the symmetry of the sphere. The secular system resulting in this 
case is diagonal. In order to separate satisfactorily the secular system arising in the 
presence of a polyhedron we have to adapt the multipole potentials to the irreducible 
representations of the symmetry group of the polyhedron. Since in the following we are 
interested in polyhedrons exhibiting tetrahedral or octahedral symmetry, we demon- 
strate this adaptation at the point group Oh of the regular octahedron. The group Oh 
gives rise to ten different representations. These are up to threefold degenerate, so that 
altogether twenty sets of adapted multipole potentials result. We need at least one set 
of potentials corresponding to each representation. 

The linear combinations of spherical harmonics adapted to the point group Oh are 
called cubic harmonics. They were introduced by van der Lage and Bethe (1947). The 
cubic harmonics are also adapted to the group Td of the regular tetrahedron, but fewer 
matrix elements in equation (2) vanish in that case. Tables representing the cubic 
harmonics in terms of spherical harmonics have been reported by Altmann and 
Cracknell(l965) and up to degree 30 by Muggli (1972). These tables usually give the 
expansion coefficients of the cubic harmonics in terms of the normalized spherical 
harmonics. The expansion coefficients become integers if an expansion in terms of the 
un-normalized spherical harmonics used in equation (1) is considered instead. In the 
following we present explicit recurrence relations for these integer coefficients, which 
are well suited to be used within a computer program. 

We identify the polar axis of the spherical multipoles (1) with one of the fourfold 
axes of the octahedron (with the z axis), so that only multipoles interact whose orders 
p, v differ by a multiple of four. The reflections at the symmetry planes x = 0, y = 0, 
z = 0, in addition, entail that there is no interaction between multipoles with even and 
odd degree and between the real and the imaginary parts. Using the selection rules 

m + n = O(mod 2), (17) 

we find the secular system (2) to separate into 16 independent secular systems. The 
secular matrices arising for p 1, 3(mod 4) are equivalent to those arising for 
p = 0,2(mod 4), c(m, -p )  = (-l)"'+'c(m, p) .  These are the four irreducible represen- 
tations r4, r;, Ts, and I'; having a degeneracy of three. 

The remaining four secular matrices can be further separated, each into two. They 
yield the irreducible representations with degeneracy 1 or 2. A convenient way of 
finding these representations is to expand symmetrically the spherical multipoles in 
terms of the rectangular coordinates x ,  y ,  z .  Then, requiring parity f 1 on any inter- 
change of two coordinates renders the representations with degeneracy 1, whereas 
requiring the sum over all permutations of the three coordinates to vanish renders the 
representations with degeneracy 2. 

For m =O(mod 2), c(m, - p )  = +c(m, p )  only even powers x ~ ' ~ ~ ~ z ~ ~  with 2r +2s + 
2t = m arise, yielding 

rl : m = O(mod 2), p = O(mod 4), c(m, - p )  = +c(m, p )  

p + v = O(mod 4), c(m, -CL) = *c (m,  P )  
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on any interchange of two parameters r, s, t. 

r2 : m = O(mod 2 ) ,  p = 2(mod 4), c(m, - p )  = +c(m, p )  

on any interchange of two parameters r, s, t. 

r3 : m =O(mod 2) ,  p = O(mod 4), c(m, - p )  = +c(m, p )  

where the first sum runs over all permutations P(r, s, t )  of the three parameters r, s, t. 
For m E l(mod 2) ,  c(m, - p )  = -c(m, p )  only odd powers ~ ~ ~ ~ ~ y ~ ~ + ~ z ~ ~ + ~  with 

(2r  + 1) + (2s  + 1) + ( 2 t  + 1) = m are left, yielding the representations r;, r;, r;. The 
recurrence relations for the coefficients c (m, p )  corresponding to these representations 
result from equations (19)-(21) by substituting (2r + l), (2s + l), (2t + l), and (21 - 1) for 
2r, 2s, 21, and 21. 

Usually, several of the recurrence relations arising for different parameters r, s, t are 
linearly dependent. For example, in order to obtain all independent recurrence 
relations for the coefficients of the representation rl it is sufficient to consider relation 
(18) for s = 0 only. 

5. Numerical results 

Figure 4 shows a number of polyhedrons exhibiting tetrahedral or cubic symmetry, 
which are usual habits of small single crystals. In the order chosen in figure 4 they result 
from each other by systematically cutting off the corners. Let us begin with the 
tetrahedron at the left. Cutting off corner segments at one third of the edges causes the 
original faces to become regular hexagons, while the new faces are regular triangles. 
Let us call this polyhedron a curtailed tetrahedron. If larger corner segments of the 
tetrahedron are cut off, so that the edges are cut at one half rather than at one third, an 
octahedron is obtained. Now cutting off corner segments of the octahedron at one third 
of the edges yields the cuboctahedron, which is the Wigner-Seitz cell of the body- 
centered cubic lattice. Cutting off corner segments of the octahedron at one half rather 
than at one third of the edges yields the cube. Finally, by cutting off edge segments of 
the cube up to the middle of the faces, we obtain the rhombohedron, which is the 
Wigner-Seitz cell of the face-centered cubic lattice. 

Figures 5-9 exhibit the eigenvalues of the normal electric modes resulting in the 
case of the six above polyhedrons. In the case of tetrahedral symmetry there exist five 
irreducible representations, each of which splits into two when cubic symmetry is 
approached. The two cubic representations merging to the same tetrahedral represen- 
tation are shown in the same figure. They are distinguished by full lines (representa- 
tions r) and broken lines (representations r‘). 

The left-hand sides of figures 5-9 result by taking into account spherical multipoles 
up to degree 4, whereas in the eigenvalue schemes shown at the right-hand side 
spherical multipoles up to degree 6 are included. The inclusion of multipoles of 
increasing degree mainly increases the number of eigenvalues close to the cluster point 
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Fwe 5. Type 1, xyr; representation r,. r;; degeneracy 1 .  

Figure 6. Type z, xy;  representation Ts, r;; degeneracy 3 .  

Figure 7. Type (x2-y2) ,  xyz(x2-y2);  representation Ts, r;; degeneracy 2. 
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-1 .o 1 
Figure 8. Type z ( x 2 - y 2 ) ,  x y ( x 2 - y 2 ) ;  representation r4, r:; degeneracy 3. 

Figure 9. Type ( x 2  - y 2 ) ( y 2  - z2)(z - x 2 ) ,  x y z ( x 2  - y z ) ( y 2  - z 2 ) ( z 2  - x * ) ;  representation 
T2, r;; degeneracy 1. 

y = -0.5, which is the eigenvalue of the normal electric modes at a half-space. The 
obvious reason for this cluster point is the fact that multipoles of high degree exhibit a 
large number of nodes: their wavelength at the surface decreases with increasing 
degree. 

The appearance of all additional eigenvalues close to the cluster point y = -0-5 
entails that the isolated eigenvalues caused by the multipoles of low degree are slowly 
shifted towards the eigenvalue y = 0 of the normal electric modes in an infinite medium 
or towards the eigenvalue y = - 1 of the monopole mode. The convergence of these 
eigenvalues is very rapid. Except for the appearance of new levels close to -0.5, there 
are only minor differences between the eigenvalue schemes obtained by including 
multipoles up to degree 4 or 6. 

Figure 5 shows the normal modes belonging to the representations rl and r;. They 
have parity + 1 on an interchange of two coordinates x ,  y ,  z .  We have stated already in 
0 3, that the monopole eigenvalue always equals - 1. In the case of the four polyhedrons 
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exhibiting cubic symmetry, all eigenvalues belonging to the representation rl turn out 
to be confined to the region -0.5 3 y -1. This result has been shown to hold in the 
presence of a cube even if multipoles up to degree 13 are included (Langbein 1976). The 
levels denoted by broken lines belong to the representation r;. These levels also appear 
at one side of the cluster point only. It is always the side opposite to that where the 
levels belonging to the representation Tz appear (see figure 9). 

Figure 6 gives the normal modes belonging to the representations Ts and r;. They 
are threefold degenerate. Within the electrostatic (or long-wavelength) limit under 
investigation, only the modes belonging to Ts give rise to dipole scattering and 
absorption. The cross section for dipole scattering by the different modes is roughly 
given by the relative contribution of the multipoles of degree m = 1. In general, this 
cross section is found to be higher for the isolated eigenvalues than for those close to the 
cluster point. However, it depends characteristically on the polyhedron under consid- 
eration, whether the eigenvalues close to 0 or close to -1 cause the strongest dipole 
scattering. The tetrahedron and the curtailed tetrahedron give rise to strong dipole 
scattering above the cluster point (0 3 y 3 -0.5). The octahedron and the rhombohed- 
ron show about equally strong scattering on both sides of the cluster point, the total 
cross section of the octahedron being larger than that of the rhombohedron. The 
cuboctahedron and the cube cause a strong dipole scattering for the isolated eigen- 
values below the cluster point (-0.5 z= y 3 - 1). 

Figures 7-9 refer to the representations requiring higher degrees of the multipoles. 
The fact that no levels at all appear on the left-hand side of figure 9 is due to the 
inclusion of multipoles of degrees 4 and 6 only. 

6. Condusions 

Small particles of only a few Angstroms diameter usually take a polyhedral habit which is 
determined by the lattice structure. Frequently one finds a habit given by the Wigner- 
Seitz cell, but various other shapes have also been observed (Uyeda 1975). In order to 
interpret the absorption and scattering spectra of these particles, their normal electric 
modes must be known. We have shown that the rapidly convergent method originally 
set up for finding the normal modes at cubes can be applied to polyhedrons of arbitrary 
shapes. All necessary surface integrals can be calculated analytically; the respective 
recurrence relations and initial values are given. This enables a straightforward 
computer calculation of all normal modes. 

It is shown that the total shift of eigenvalues caused by the (2m + 1) multipoles of 
equal degree is independent of the shape of the polyhedron considered. As a conse- 
quence, the monopole eigenvalue always equals - 1 and the Lorentz-Lorenz relation 
holds for all polyhedrons exhibiting three equivalent space directions. A systematic 
shift of the cross section for dipole scattering from y-values above -0.5 to y-values 
below -0.5 (from e-values above -1 to e-values below -1) is found when the shape of 
the poIyhedron changes from a tetrahedron to a cube. More detailed investigations into 
the dipole scattering and absorption cross sections require application of the elec- 
trodynamic rather than the electrostatic limit. This will be reported in a subsequent 
paper. 

Knowledge of the normal electric modes at polyhedral particles is important not 
only for an understanding of optical absorption and various surface phenomena, but 
also in investigations on voids in dielectrics or metals. Such voids, too, usually show a 
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polyhedral habit and are included in the present procedure by the interchange of eint ( U )  

and E , , ~  ( U ) .  Another promising application is the calculation of lattice structures in van 
der Waals crystals like those of the inert gases. The difference in binding energy 
between the FCC and the HCP structures is so small that the usual van der Waals type 
calculations may favour another structure depending on the number of multiplet 
contributions included. Investigations based on normal electric modes eliminate this 
difficulty by accounting for all multiplet interactions from the start. 

Perhaps the most promising application of the present method is to the calculation 
of the habits of small particles itself. The total free energy corresponding to a distinct 
habit is determined by the zero-point energy of the electromagnetic radiation field. The 
present method permits convergent investigations on the change in zero-point energy 
relative to that resulting for spherical shape. From the conservation law for the 
eigenvalues we conclude that the total zero-point energy of the radiation field would not 
depend on the shape of the particle at all, if the eigen-frequencies w were proportional 
to the eigenvalues y, i.e. eint/eext = c (U - o0)/[ 1 + C ( U  - wO)],  where c is an arbitrary 
constant. The deviations of eint(u)  from this simplified behaviour determine the habit 
with lowest free energy. With increasing particle size, when the long-wavelength limit is 
no longer applicable, so that the scattering and absorption cross sections depend 
characteristically on the wavelength and retardation effects become important, the 
particle shape exhibiting lowest energy may change. For substances exhibiting plasma 
resonances in the usual range of a few electron volts, this change in shape is expected at 
sizes of the order of magnitude of 0.1 km. 
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